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Fractional diffusion and Levy stable processes
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Anomalous diffusion in which the mean square distance between diffusing quantities increases faster than
linearly in “time” has been observed in all manner of physical and biological systems from macroscopic
surface growth to DNA sequences. Herein we relate the cause of this nondiffusive behavior to the statistical
properties of an underlying process using an exact statistical model. This model is a simple two-state process
with long-time correlations and is shown to produce a random walk described by an exact fractional diffusion
equation. Fractional diffusion equations describe anomalous transport and are shown to have exact solutions in
terms of Fox functions, including My a-stable processes in the superdiffusive doméin2<H<1).
[S1063-651X%97)03301-1

PACS numbd(s): 05.40:+j, 05.45+b, 05.60:+w

[. INTRODUCTION tion of the fractional order parameter with the index of the
inverse power-law waiting-time distribution function and the
It is not quite two decades since Mandelbrot introduced_évy index. Another example is anomalous diffusion, where
the term fractal into the scientists’ lexicon. This term tookthe anomaly can be either the time dependence of the vari-
cognizance of the fact that there was a large class of physance of a process, i.e., the variane€’", wheret is the time
cal, biological, and physiological phenomena that traditionabnd H# 1/2, or the statistics of the variate. The former
statistical physics was not equipped to describe, much less #nomaly is often described by fractional Brownian motion,
explain. The typical features of these phenomena is that thewhereas the latter uses \nestable distributions. Both these
are complex, nonlinear, and appear to fluctuate randomly itypes of anomalies arise in the modeling of DNA sequences
space and/or time. The spectral properties of such systemsee for example,7]) and in a variety of other biomedical
rather than being dominated by a narrow band of frequenphenomena, including interbeat interval distribution of mam-
cies, spread themselves into a broadband spectrum, so thatlian heartbeats and ion-channel gating; E@ffor an
correlations persist from very-short- to very-long-time overview.
scales; see, e.gll]. Such spectra, when they are inverse Herein we develop the exact equation of evolution for a
power law, indicate fractal random time series and could balichotomous process having correlated fluctuations. In Sec.
generated either by colored noise or by the chaotic solution we argue that the general equation reduces to normal dif-
to low-dimensional deterministic nonlinear dynamical equa-fusion when the microscopic correlation time scale is finite.
tions. Of course, chaotic dynamical systems often have exdowever, when there is no separation of the microscopic
ponentially decaying rather than inverse power-law spectradrom the macroscopic time scales the diffusion is anomalous.
On the other hand, the statistics of the fluctuations are oftein Sec. Il we examine anomalous diffusion using an inverse
found to deviate strongly from that normally expected usingpower-law correlation function and demonstrate that the evo-
the central limit theorem(CLT); for example, the second lution of such a process can be represented by a fractional
moment diverges. A generalized version of the CLT vyieldsdiffusion equation. Seshadri and Wd#] showed that a
Lévy stable distributions to describe the statistical fluctua-Lévy stable process is described by a fractional diffusion
tions in these systems; see, for examf?, Subsequently, it equation. We show that anomalous diffusion, where the vari-
has been found that both the inverse power-law spectra arahce does not increase linearly with time, is not described by
the Levy statistical distribution are a consequence of scalingractional Brownian motion, that is, the statistics are not
and fractals; se¢3]. Herein we restrict our discussion of Gaussian. A method for solving such fractional diffusion
dynamical systems to those that can be characterized by edquations using Fox functions is presented in Sec. IV. The
ther an inverse power-law spectrum Myestatistics, or both.  Fox function method has been championed in relaxation pro-
The understanding of these phenomena, and some previesses by Gitckle and Nonnenmachdi6] and was intro-
ous ones as well, has only come about through the develogluced into the study of anomalous diffusion processes by
ment and implementation of alternative modeling strategiesSchneidef10], where he derived a Fox function representa-
For example, the Maxwell-Zener standard constitutive equation of Léevy stable distribution functions. Explicit solutions
tions relating stress to strain have been generalized to fra®f fractional wave and diffusion equations were given by
tional order differential equations in time; df4] and[5]. Schneider and Wysg11] and, more recently, by Metzler
Glockle and Nonnenmachg8] pointed out some relations of et al.[12] in terms of Fox functions. The fractional diffusion
fractional differential equations to continuous-time randomequation derived herein is formally different from that de-
walks (CTRW's) of trapping type leading to the identifica- rived by Schneidef10] and is shown to reduce to the even

1063-651X/97/561)/99(8)/$10.00 55 99 © 1997 The American Physical Society



100 WEST, GRIGOLINI, METZLER, AND NONNENMACHER 55

is the chaotic map used by Allegriat al.[7] to model DNA
sequences with long-range correlations.

The reduced probability density for the random walk vari-
able x(t) is determined by the projection operatBf="P
such that

(To(X,t)EP(,D(X,g,t). (3)

The orthogonal complement to this reduced probability is
determined by

o1(X,H)=Qe(x,§1), 4

whereP+ Q=1. Using these two distributions allows us to
partition Eq.(2) into the two equations

4000 - ; dop(X,t) ~doq(X,t)
= _PS

at ox (53

&Ul(x,t) __ Q;&Uo(x,t)

- - + Ol (x,1), (5b)

where we have used the operator relatigis=1"P=0, in-
10000 ! 1 1 1 1 L dicating that the dynamical operator for the velocity fluctua-
W00 000 00 AW 0 0 100 0 X0 tions couples only to the excited statg(x,t) and not to the
ground statery(x,t). On the other hand, the operathcon-
FIG. 1. Two-dimensional random walk given K§) with an nects 0-1()(11:) '[OAO-O(X,'[) and has no diagona| matrix ele-

inverse power-law correlation functiofi5), depicted withw=1 ments so thalQéQ=PéP=0. Thus we can integrate Eq
and the power-law indeg=0.5. Note the clustering of the walk so (5b) to obtain ' '

typical of a Levy process.

t Tyl &UQ(X,t)
earlier integro-differential equation for kg processes de- oy(Xt)= —f Qe ' t@Tdt', (6)
veloped by Seshadri and Wd$]. In Sec. V we apply this 0
method to our model process and show that dichotomougnich when inserted into Eq5a yields
random fluctuations with an inverse power-law correlation
function can have Ly statistics. In Sec. VI we draw some dog(X,1) t . . ~ Pog(X,t")
general conclusions. —=J PeQe T -V0e———>——dt’.  (7)
at 0 X
Il. TWO-STATE MODEL It is a simple matter to prove that the coefficient of the sec-

. _ . ._ond derivative in the integrand is just the two-time correla-
We consider one of the simplest of stochastic differentiakj,, function

equations, that being

PEQe TV QE=(£(n) (1)), (8)
dx(t)
dt =&(0), D) 5o that Eq.(7) can be rewritten
2 ’
whereé(t) is a two-state process taking the valuess and M: f@(t)g(t,))m’;”dt,_ 9)
is depicted in Fig. 1. lfp(x,&,t)dxdé is the probability that ot 0 IX

the dynamical variablex(t) and &(t) have values in the _ i _
intervals & x+dx) and (¢ &é+dé) in general, then the Note that Eq.(9) is an exactequatlon_of evolu_t|on f_or a
phase-space equation of evolution corresponding to the d);\_/vo—state process having the correlation function given by

namical equatiorfl) is given by Eq. (8). L )
Normal diffusion is a natural consequence of the exist-
ence of a microscopic time scale, defined by

_ f”’(é(o)f(t’»

2
HereI is an operator characterizing the dynamics of ¢ghe ° &
process and is an operator having the eigenvaluesy. The If the correlation function(&(0)&(t’)) decays quickly
underlying process generatirgft) is not known and need enough to maker finite, we can explore the random-walk
not be specified except insofar as it provides the appropriatprocess for times very large compared te. The time scale
fluctuations driving Eq(1). An example of such a generator separation between the random-walk process and the veloc-

e(X,&,1). 2

d _ ~d A
dt’. (10
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Gaussian diffusion process for the two-state model. On the X2 dt’. (18
other hand, whenr—« there is no time scale separation
between the macroscopi@iffusion) and the microscopic
process(fluctuations of the velocity variabl€) and the re-
sulting statistics are not Gaussian in general. In the next sec-

tion we turn our attention to a realization of such a process. IPE(1) 1 f(t)dt’
P T(1-8) Jo(t—t)F’

ity fluctuations allows the CLT to work, thereby reaching a doo(x,t) ft< 2> A Rog(xt))
- (t—t

Introducing the Riemann-Liouville fractional derivative in

(19
Ill. FRACTIONAL DIFFUSION EQUATION

It was not stressed in the preceding section, so let us do st€e can rewrite Eq(18) as the fractional diffusion equation
now, and emphasize that E) implies that the two-point )
correlation(£(t") £(t")) depends only on the time difference dao(X,1) :Cﬁ_ PP ao(x,t)
|t’—t"| and the process is therefore stationary. Let us intro- at x> gtP
duce the equilibrium correlation functich,(t) defined by

: (20

whereC is the appropriate collection of constants. Equation
(§(0)&(1)) (20) was previously obtained by Comdti4] using a CTRW
(&) a1 formalism that summarized the research of a number of in-
vestigators who had obtained equivalent results for factor-
which is the function used in the definition of the micro- able space and time transition probabilities with inverse
scopic time raté10). Geiselet al.[13] established a connec- power-law memory functions, see for examgles] and[6].
tion between the stationary correlation functidi) and an-  The form of the fractional diffusion equatiq@0) is not very
other important statistical function, the waiting-time useful for practical calculations, however, so we now turn
distribution ¢(t) used in CTRW models. This latter function our attention to how one actually solves equations expressed
determines the probability that(t) has made a transition in terms of fractional derivatives.
between states in a time In the specific case where the
variable is a dichotomous process, as in the case of interest IV. SOLUTIONS TO FRACTIONAL DIEEUSION

q)g(t)z

here, this connection betwedn.(t) andy(t) is exact and is EQUATIONS
given by
The most direct way to solve fractional diffusion equa-
Ji(t =t)y(t’)dt tions is by means of FoX functions. The Fox functions
D(t)= ZUgthdr (12 ariseasa consequence of applying Laplace-Mellin transform

techniques to fractional operator equations. Let us briefly
For this relation we consider the case of an inverse powerteView this relation following Glokle and Nonnenmacher

law waiting-time distribution [6]. The fractional Riemann-Liouville operator is defined by
1 D_”fa)—JWQL;————HthV (21)
WO~ . ¥>0 (13 T T T
with for u>0, which represents a fractional integration. For

v=—pu>0 the fractional differential operatQD; is consid-
ered to be composed of a fractional integration of the order
n—v (n—1<w=n) followed by an ordinary differentiation

1< y<2. (14)

Inserting Eq.(13) into Eqg. (12), the restriction on the index

(14) yields of the ordem, i.e.,
A D d\" Joon

D(t)~ 17, (15) Dif()=|g;) Pt f(D. (22)

with The fractional derivatives and integrals of a Fox function are
calculated by formally manipulating the parameters in the

0<B<1, (16)  H function as

since (aj,a))
D osz n( (a )B ] J ) ]

B=y—1. (17 0 [ (bj.B))
Thus we see that the functional forgi(t) (13) with the —za ML | (578 (—a,B),(aj,a)) 23)
index in the rangd14) generates the inverse power-law be- prlatl (bj.B)),(v—a,B)

havior of ®.(t) and hence the breakdown of the condition of

a finite microscopic time scale (10) for normal diffusion. for arbitrary », for «,8>0 and a+ gmin(b;/B)>—1
The form of the two-point correlation functiqd5) allows  (1<j<m). See the Appendix for definitions and some for-

us to rewrite Eq(9) in the form mal properties oH functions. The most important property
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of the Fox functions for our present purposes has to do withthe poles of the integral occurs kt:i[sg)—l(s)]uz for
their Laplace transforms and inverse Laplace transforms. U< and atk=—i[s® 1(s)]¥2 for x>0, so Eq.(33) is

ing the notation
€Y ,Oéj))
(b] 1B]) '

the Laplace transform of this Fox function can be expresse
in terms of another Fox function

H(t)=HT?

alt

(29

H(S)—ﬁH(t)—qu,pH(S(1,1),(1—aj.aj) 29
forosﬂﬁland
. 1 1 (011)(aA’a‘)
H(s)=gH?'+"f,ql<g (b,-,,(la,-)l) 26)

for u=1, respectively. The parametegr is defined in the
Appendix. On the other hand, if we are given

ﬁ(s)=Hm'”(s (@ 'aj)) (27)
PAL T (b, By )
the inverse Laplace transform is given by
_ -1 _E n,m ( (1_bj”3j) )
AO=L7HE = Hapal Y 1-a ), (LD
(28)
for Ospu<1 and
H(t)_E m,n (E (ai’aj)’(0’1)> (29)
toPTalt] (byLBy)

for u=1, respectively. The relation&5-(29) hold for

A>0 and for
{2 |

where Re denotes the real part of a complex number.
Now consider the Laplace-Fourier transformt(—Kk,s)
of Eq. (18),

-
%

e(ﬂ
Bj

< min R

1<j<m

max R

1<j=n

(30

ao(k,s)= (31

s+d(s)k?’

where&)(s) is the Laplace transform of the stationary corre-
lation function. For the inverse power lajg5) we have
D(s)=A(E)sP L. (32

To make use of the Fox functions we require only the

Laplace transform of the probability density. Therefore we

consider the inverse Fourier transform of Eg1) to obtain

[

1 e kxdk

2 ) —ws+ d(s)k? 33

Eo(X,S):

directly integrated to yield

_exp—[xI\sB (5))

2/sd(s)

ao(X,S)

(39

fhich for the inverse power-law correlation function yields

_ gH-1 |x|s"
oo(X,S)= Wexp{ - W , (35
where
H=1-p/2. (36)

It is a simple matter to express E5) in terms of the
Fox function(see alsg12]) and then use the inverse Laplace
transform relations to obtain the solution to the fractional
diffusion equation(20). We obtain

(37

wherex=x/A(£?). Since 0<B<1 we have from Eq(36)
that 1/2<H<1, so that the inverse Laplace transform of Eq.
(37 is

H-1 1
H 'H

To(X,8) Hé:i(lﬂ“’“s

1
AR

o 1 S X Ta-HD
g, W)=/ ’ —_— .
° AA(EH M | JA(EH] | (0,1H)
(38)
A closed-form asymptotic expression for EB8), with
Ix|"Mit>1, is
Ix[2H-1 1/(2—2H)
oo(X,1)=C| —==— exp —(1—H)HH(-H)
AA(£%)tH
|x| 1/(1—H)
wew >
where the prefacto€ is given by
2H/(2—2H)H(2H—3/2)/(1—H)
= (40)

2JmIHVIH -1

Both Egs.(38) and (39) for H=1/2 reduce to the familiar
Gaussian distribution

(41)

1 X2
o A e

Note that in Eq(39) the dimensions of/A(§2> are (length/
(time)™, so that the exponent is dimensionless and the pref-
actor has dimension diength %, as it should for a prob-
ability density in one dimension.

In Fig. 2 the probability density is depicted in the scaled
variable x/t" for x>0. The dependence of the tail of the
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F_IG. 2. .Prok_JabiIity de_nsityro(x,t) that is the solution to the FIG. 4. Full range of the symmetric probability density

fractional diffusion equatiori20) for H=0.5 (- - -), H=0.6 (—), oo(x,t), depicted at the single timé=1 for H=0.5 (---),
andH=0.8 (— - —), plotted in scaled variables. H=0.65(—), andH=0.8(- - -).
distribution onH is evident, with the higheH decaying (1)) =Kt 43)
more rapidly. This behavior is more clearly seen in Fig. 3 on '

a log-log plot. The Gaussian distribution has a rapidly decayWhereK is a constant. Because=H=1/2 we have anoma-
ing shoulder and is flat in the vicinity ok=0, whereas

I iffusi i f Eq.
H>1/2 gives rise to a hump prior to its decay. The full range ous diffusion, since from Ed:36)
of the symmetric distribution is depicted in Fig. 4. The su- (xz(t))thZ*'B 0<p<1 (44)
perdiffusive proces$i>1/2 is bimodal with the symmetric ’

peaks revealing the tendency for a walker to continue walkyq that the process is superdiffusive and non-Gaussian. This
ing in a direction over and above that determined by purgame result could, of course, also have been obtained using

randomness. In Eig. 5 th_e pegks in this Iatte_r process are se@dl Fox function(38) rather than its asymptotic forr(89)
to separate with increasing time and the distribution flattensiih a little more work.

out. Note that the apparent cusp in the bimodal distribution is

an illusion of scale, the distribution is actually flat in the .

vicinity of x=0, as seen in Fig. 5. V. LEVY STABLE PROCESSES
It is also worthwhile to use Eq39) to calculate the mean-

_ It was shown by Zumofen and Klaftdrl6], using a
square displacement of the random walker at ttme

CTRW, and by Trefa et al. [17], using a master equation

approach, that if unavoidable dynamical truncations are ig-
<x2(t)>=Jm x2ao(x,t)dX, (42) nored, the diffusion generated by the correlated, dichoto-
—w mous process§ results in a characteristic function for a sym-
metric Levy stable process with the kg index a=y. This
from which we obtain

means that we are observing arstable Ley process with
an index in the interval £ @<2. Notice that, in principle,
the a-stable Ley process concerns the wider range
log (tHa(:c,t))

0'0('73$t)
~~-~~—0.25
“/_;:
—04fi
~0.45}
H -H
- 3 2 1 + log (:ct )

FIG. 3. Probability densityoq(x,t) depicted in Fig. 2 for

H=0.5(- - -) andH=0.6 (—), replotted on a decadic log-log scale FIG. 5. Full range of the symmetric probability density
to emphasize the behavior of the distribution in the neighborhood ofry(x,t), depicted forH=0.7 at four times=1 (—), t=2 (---),

x=0. t=5(---),andt=10(- - -).
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0<a=<2. However, the conditiom=1 refers to processes so that changing the derivative on the Dira@ function to a
faster than ballistic diffusion and so is incompatible with thet’ derivative and integrating the resulting equation by parts
dynamical nature of the process described by #jg.In the  give rise to
preceding section we observed that taking the asymptotic
limit in both space and time, such thad/t">1, gives rise doo(X,t) f“ dx (|X—x’|) (x'.1)
to an exponential distribution function. This result is incon- ot v 7o
sistent with the Ley distribution obtained earlier, since the
latter has an inverse power-law form asymptotically. Howwhere the kernel is given by
can these two results be resolved? N 2

The answer lies in the choice of the correlation function W)= @ "D (1) (50)
used in Sec. IV. If the two-point correlation function is to 2We gt?
have a unit value initially then

(49

Note that here we do not need to assume the relation between
the correlation function and the waiting-time distribution
()= ——7, (45) function from CTRWSs given by Eq12). If we now use the
(B+1)# inverse power law45) in Eqg. (50), taking cognizance of the
fact that(£2)=W?, we can rewrite Eq(49) as
which is unity att=0 if A=BA. The asymptotic form for the
correlation function(45) was assumed to be given by Eq. doo(X,1) _ fw dx’
(15 and was used in the fractional diffusion equati@.
Equation(15) does not properly describe the dynamics of the
two-state process, however. Note that Here is where we take advantage of the fact that the time
constraint has already been accounted for through(4&4q,
so we can negled in Eq. (51). Introducing the parameter
(46) a=p+1 and evaluating the coefficiefl to be

Uo(xr,t)

Brx—xprz Y

P = e

b
C= —sm

p+1
andt’ approaches at the upper limit of the integrdll8) so F(a+1) BB+1LAW (52

that B cannot be neglected relative to—(t’) even at very

long times. To properly account for the nonzero valueBof Wwe obtain from Eq(51)

we change the non-Markovian equati@) into a Markovian

equation using the constraint doo(x,t) _ Esin(ﬂ
ot o\ 2

Uo(X’,t)
|X_Xl|a+l'

F(a+1)f:dx’
(53)

Seshadri and Wes}9] established that Eq(53) is the
integro-differential equation describing the evolution of an

This constraint implies that the transition tirhdo the time ~ @-stable Ley process for &ca<2.
(t—t') is obtained by assuming that the velocity is kept con-  The Fourier transform of E¢(53) is given by
stant for the whole interval of timg. This constraint would A

be violated by ordinary Brownian motion, but is certainly M
fulfilled by dynamical systems with the correlation function dt
(46) for time intervals of the order oB. For longer time
intervals the constrain@7) is violated and its introduction
into Eq. (9) turns out to be an approximation. This approxi-
mation, however, serves the important purpose of preventin
us from overestimating the short-time region of the correla- 1 1

tion function and in so doing from introducing a fictitious &o(k,t)zexp(—bt|k|“)=—H$€((bt)l’“|k|‘(O,—))
“microscopic” times scale, which is responsible for the re- a - a

sults illustrated in Figs. 2—4. Thus the results of Sec. IV are (55)
a consequence of overemphasizing the short—time behavi
of the approximate correlation function, even in the “asymp-

oo

1
go(xt=t)=5m | dx'a[t

|x—x'|
- )ao(x’,t). (47)

+blk|*oq(k,t)=0, (54)

which immediately integrates to an exponential with the ini-
tial condition o¢(k,0)=1. Therefore, in terms of Fox func-
Hons we can write

%hd subsequently the inverse Fourier transform of (&)
yields the probability density

totic” regime.
Substituting the distribution functiof4?7) into Eq. (9) 7l X [(1,1a),(1,1/2
yields “O(X't):mHiZ((bt)ﬂ“ (1,9,(1,1/2 )
doo(x,t—t') L1 [t (e - i, T(1+la)  [Iwa) (bt)
T—mfo‘“ vt & (Vs T e 69

|x=x|
w

the expansion being valid for large argument
|x|/(bt)¥*>1. A generalization of this series expansion for

oo(X',t), (49

xdx’&(t’—
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the Fox function is given by Gltkle and Nonnenmachgg] 7, (1—aj+ ;) I T (by— BiS)
and the idgnticql sgrieg is given by Montroll and V\:{ﬁtror h(s)= I T(1—b,+ B9l Ta-a9’
a-stable Ley distributions. It appears that Schneidd] l=m+1 PERR r=n+1t A9 S

was the first to realize that Mg a-stable processes can be (A2)
expressed in terms of Fox functions. where p, g, m, and n are integers satisfying ©n<p,
Note that the asymptotic form of the &g a-stable pro-  1<m=q, and empty products are interpreted as unity; see
cess is an inverse power law [18] and [19]. The parametersy; (j=1,...,p) and B;
bt (J=1,... Q) are positive numbers argf (j=1, ... p) and
oo(X,t)~ T (57 bj (j=1,...) are complex numbers satisfying
. . L . a;j(b+v)#Bi(aj—1-\) (A3)
This asymptotic behavior is distinct from the exponential
from observed in Eq(39) and is a consequence of maintain- for »,A=0,1,...;l=1,... m;andj=1, ... n. HereCis a
ing the effect ofB>0 in the asymptotic limit through the contour in the comples plane separating the poles in such a
constraint(47). way that the poles of' (b;—8;s) (j=1,...m) lie to the
right and the poles df (1—a;+«;s) (j=1, ... n) lie to the
VI. CONCLUSION left of the contoulC. The Fox function is an analytic function

. , . 21
A simple two-state random process with an inversezfzzo(l)v\fﬁrereeveryz#O it >0 and(ii) for 0<[z|<p™"is
power-law correlation function was shown to produce a ran- '
dom walk described by an exact fractional diffusion equa- q
tion. Such equations describe anomalous transport and were w=
shown to have exact solutions in terms of Fox functions. The 1=
fractional calculus was shown to present a powerful math-
ematical method for deriving and solving fractional diffusion and

equations. Exact analytic solutions to such equations are ob- p
tained in terms of Fox functions by using Fourier, Laplace, B=
and Mellin transforms. The property that the Laplace trans- i=
form of a Fox function is still a Fox function with altered o .
indices enables us to obtain exact solutions to the fractionaine H fu_nct|on_ is, in general, rr_1u_lt|pl_e valued due to the
diffusion equations and ultimately to express the solutions ifactor z° in the integral(Al), but it is single valued on the

p
Bi— 2> a (A4)

Bk (A5)

terms of more familiar special functions. Riemann surface of In
The theorem of residues enables us to express the Fox
ACKNOWLEDGMENTS function as the infinite series
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APPENDIX: FOX FUNCTIONS H T'(1—by+ BySi) H I'(a,— S
Fox's H function is defined by the Mellin-Barnes-type ummed vond
integral (—1)k z5%
— (A6)
m,n (a' a) 1 S, k Bl
Hp.a (b,ﬁ)) —ﬁJ'Ch(s)z ds, (A1) where s =(b,+k)/8,. The prime indicates the product
- without the factorj =1. The formula(A6) can be used for the
where  @,a)=(a;,a1),(az,@3), ...,@p,ap); (b,B) calculation of special values of Fox functions and to derive
=(b1,B1),(b2.82), . .. .(bq.B); andh(s) is given by the asymptotic behavior fa—0.
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